Размеры вселенной. Размеры вселенной Размер вселенной в метрах

Вселенная — это все, что существует. Вселенная безгранична. Поэтому, рассуждая о размерах Вселенной мы можем говорить только о размерах ее наблюдаемой части — наблюдаемой Вселенной.

Наблюдаемая Вселенная — это шар с центром на Земле (месте наблюдателя), имеет два размера: 1. видимый размер — радиус Хаббла — 13,75 млрд. световых лет, 2. реальный размер — радиус горизонта частиц — 45,7 млрд. световых лет.

Современная модель Вселенной еще называется ΛCDM-моделью. Буква «Λ» означает присутствие космологической постоянной, объясняющей ускоренное расширение Вселенной. «CDM» означает то, что Вселенная заполнена холодной тёмной материей. Последние исследования говорят о том, что постоянная Хаббла составляет около 71 (км/с)/Мпк, что соответствует возрасту Вселенной 13,75 млрд. лет. Зная возраст Вселенной, можно оценить размер её наблюдаемой области.

Согласно теории относительности информация о каком-либо объекте не может достигнуть наблюдателя со скоростью большей, чем скорость света (299792458 км/c). Получается, наблюдатель видит не просто объект, а его прошлое . Чем дальше находится от него объект, тем в более далёкое прошлое он смотрит. К примеру, глядя на Луну, мы видим такой, какой он была чуть более секунды назад, Солнце – более восьми минут назад, ближайшие звёзды – годы, галактики – миллионы лет назад и т.д. В стационарной модели Эйнштейна Вселенная не имеет ограничения по возрасту, а значит и её наблюдаемая область также ничем не ограничена. Наблюдатель, вооружаясь всё более совершенными астрономическими приборами, будет наблюдать всё более далёкие и древние объекты.

Размеры наблюдаемой Вселенной

Другую картину мы имеем с современной моделью Вселенной. Согласно нее Вселенная имеет возраст, а значит и предел наблюдения. То есть, с момента рождения Вселенной никакой фотон не успел бы пройти расстояние большее, чем 13,75 млрд световых лет. Получается, можно заявить о том, что наблюдаемая Вселенная ограничена от наблюдателя шарообразной областью радиусом 13,75 млрд. световых лет. Однако, это не совсем так. Не стоит забывать и о расширении пространства Вселенной. Пока фотон достигнет наблюдателя, объект, который его испустил, будет от нас уже в 45,7 млрд световых лет. Этот размер является горизонтом частиц, он и является границей наблюдаемой Вселенной.

Итак, размер наблюдаемой Вселенной делится на два типа. Видимый размер, называемый также радиусом Хаббла (13,75 млрд. световых лет). И реальный размер, называемый горизонтом частиц (45,7 млрд. световых лет).

Принципиально то, что оба эти горизонта совсем не характеризуют реальный размер Вселенной. Во-первых, они зависят от положения наблюдателя в пространстве. Во-вторых, они изменяются со временем. В случае ΛCDM-модели горизонт частиц расширяется со скоростью большей, чем горизонт Хаббла. Вопрос на то, сменится ли такая тенденция в дальнейшем, современная наука ответа не даёт. Но если предположить, что Вселенная продолжит расширяться с ускорением, то все те объекты, которые мы видим сейчас рано или поздно исчезнут из нашего «поля зрения».

На данный момент самым далёким светом, наблюдаемым астрономами, является . Вглядываясь в него, учёные видят Вселенную такой, какой она была через 380 тысяч лет после Большого Взрыва. В этот момент Вселенная остыла настолько, что смогла испускать свободные фотоны, которые и улавливают в наши дни с помощью радиотелескопов. В те времена во Вселенной не было ни звёзд, ни галактик, а лишь сплошное облако из водорода, гелия и ничтожного количества других элементов. Из неоднородностей, наблюдаемых в этом облаке, в последствие сформируются галактические скопления. Получается, именно те объекты, которые сформируются из неоднородностей реликтового излучения, расположены ближе всего к горизонту частиц.

Реальные размеры Вселенной

Итак, мы определились с размерами наблюдаемой Вселенной. А как быть с реальными размерами всей Вселенной? современная наука не располагает сведениями о том, каковы реальные размеры Вселенной и имеет ли она границы. Но большинство ученых сходится во мнении, что Вселенная безгранична.

Вывод

Наблюдаемая Вселенная имеет видимую и истинную границу, называемую соответственно радиусом Хаббла (13,75 млрд св. лет) и радиусом частиц (45,7 млрд. световых лет). Эти границы полностью зависят от положения наблюдателя в пространстве и расширяются со временем. Если радиус Хаббла расширяется строго со скоростью света, то расширение горизонта частиц носит ускоренный характер. Вопрос о том, будет ли его ускорение горизонта частиц продолжаться дальше и не сменится ли она сжатие, остаётся открытым.


Обычно, когда говорят о размерах Вселенной, подразумевают локальный фрагмент Вселенной (Мироздания) , который доступен нашему наблюдению.

Это так называемая наблюдаемая Вселенная – область пространства, видимая для нас с Земли.

А так как возраст Вселенной около 13 800 000 000 лет, то независимо от того в каком мы направлении смотрим, мы видим свет, который достиг нас за 13,8 миллиарда лет.

Так что, исходя из этого, логично думать, что наблюдаемая Вселенная должна быть 13,8 х 2 = 27 600 000 000 световых лет в поперечнике.

Но это не так! Потому что с течением времени космос расширяется. И те далекие объекты, которые испустили свет 13,8 млрд. лет назад, за это время улетели еще дальше. Сегодня они уже более чем в 46,5 миллиардах световых лет от нас. Удвоив это, получаем 93 миллиарда световых лет.

Таким образом, реальный диаметр наблюдаемой вселенной составляет 93 млрд. св. лет.

Визуальное (в виде сферы) представление трёхмерной структуры наблюдаемой Вселенной, видимой с нашей позиции (центр круга).

Белыми линиями обозначены границы наблюдаемой Вселенной.
Пятнышки света - это скопления скоплений галактик – суперкластеры (supercluster) – самые большие известные структуры в космосе.
Масштабная линейка: одно деление сверху - 1 миллиард световых лет, снизу – 1 миллиард парсек.
Наш дом (в центре) здесь обозначен как Сверхскопление Девы (Virgo Supercluster) – это система, включающая десятки тысяч галактик, в том числе нашу собственную – Млечный Путь (Milky Way).

Более наглядное представление о масштабах обозримой Вселенной даёт следующее изображение:

Схема расположения Земли в наблюдаемой Вселенной – серия из восьми карт

слева направо верхний ряд: Земля – Солнечная система – Ближайшие звезды – Галактика Млечный Путь, нижний ряд: Местная группа галактик – Скопление Девы – Местное Сверхскопление – Обозримая (наблюдаемая) Вселенная.

Чтобы лучше прочувствовать и осознать, о каких колоссальных, не сопоставимых с нашими земными представлениями, масштабах идет речь, стоит посмотреть увеличенное изображение этой схемы в медиа просмотрщике .

А что можно сказать о всей Вселенной? Размер всей Вселенной (Мироздания, Метавселенной), надо полагать, гораздо больше!

Но, вот какая она эта вся Вселенная и как устроена, это пока остается для нас загадкой…

А как насчет центра Вселенной? Наблюдаемая Вселенная имеет центр - это мы! Мы находимся в центре наблюдаемой Вселенной, потому что наблюдаемая Вселенная - это просто участок космоса, видимый нам с Земли.

И подобно тому, как с высокой башни мы видим круглую область с центром в самой башне, также мы видим область космоса с центром от наблюдателя. На самом деле, если говорить точнее, каждый из нас - центр своей собственной наблюдаемой Вселенной.

Но это не значит, что мы находимся в центре всей Вселенной, как и башня - отнюдь не центр мира, а только центр того кусочка мира, который с нее видно - до горизонта.

То же и с наблюдаемой Вселенной.

Когда мы смотрим в небо, мы видим свет, который 13,8 миллиарда лет летел к нам из мест, которые уже в 46,5 миллиардах световых лет от нас.

Мы не видим то, что за этим горизонтом.

Диаметр Луны 3000 км, Земли — 12800 км., Солнца 1,4 млн. километров, при этом расстояние от Солнца до Земли 150 млн. км. Диаметр Юпитера, самой большой планеты нашей солнечной системы — 150 тыс. км. Не зря говорят, что Юпитер мог бы быть звездой, в видео рядом с Юпитером расположена работающая звезда, ее размеры () даже меньше Юпитера. Кстати, раз уж коснулись Юпитера, то возможно вы не слышали, но Юпитер не вращается вокруг Солнца. Дело в том, что масса Юпитера настолько велика, что центр вращения Юпитера и Солнца находится за пределами Солнца, таким образом и Солнце и Юпитер вращаются совместно вокруг общего центра вращения.

Размеры вселенной

По некоторым расчетам в нашей галактике, которая называется «Млечный путь» (Milky Way), находится 400 млрд. звезд. Это далеко не самая крупная галактика, в соседней Андромеде звезд больше триллиона.

Как указано в видео на 4:35 через несколько миллиардов лет наш Млечный путь столкнется с Андромедой. Согласно некоторых расчетов, используя любые известные нам технологии, даже усовершенствованные в будущем, мы не сможем долететь до других галактик, так как они постоянно удаляются от нас. Помочь нам может только телепортация. Это плохая новость.

Хорошая новость — мы с вами родились в удачное время, когда ученые видят другие галактики и могут теоретизировать на тему Большого взрыва и других явлений. Если бы мы родились намного позже, когда все галактики разлетелись бы далеко друг от друга, то скорее всего мы не смогли бы узнать, как возникла вселенная, были ли другие галактики, был ли Большой взрыв и т.п. Мы бы считали, что наш Млечный путь (объединенный к тому времени с Андромедой) — единственный и уникальный во всем космосе. Но нам повезло, и мы что-то знаем. Наверное.

Вернемся к цифрам. Наш небольшой Млечный путь содержит до 400 млрд. звезд, соседняя Андромеда более триллиона, а всего таких галактик в наблюдаемой вселенной насчитывается более 100 млрд. И во многих из них содержат по несколько триллионов звезд. Это может показаться невероятным, что в космосе такое количество звезд, но как то американцы взяли и навели свой могучий телескоп Хаббл на совершенно пустое пространство в нашем небе. Понаблюдав за ним несколько дней, они получили вот такую фотографию:

На совершенно пустом участке нашего неба они нашли 10 тыс. галактик (не звезд), каждая из которых содержит миллиарды и триллионы звезд. Вот этот квадратик в нашем небе, для масштаба.

А что творится за пределами наблюдаемой вселенной мы не знаем. Размеры вселенной, которую мы видим порядка 91,5 млрд. световых лет. Что за дальше — неизвестною. Возможно вся наша вселенная всего лишь пузырек в бурлящем океане мультивселенных. В которых может быть даже действуют другие законы физики, например не работает закон Архимеда и сумма углов не равна 360 гр.

Наслаждайтесь. Размеры вселенной на видео:

Портал сайт – это информационный ресурс, на котором Вы сможете получить много полезных и интересных знаний, связанных с Космосом. В первую очередь речь пойдет о нашей и других Вселенных, о небесных телах, черных дырах и явлениях в недрах космического пространства.

Совокупность всего существующего, материи, отдельных частиц и пространства между этими частицами называют Вселенной. По представлениям ученых и астрологов, возраст Вселенной составляет примерно 14 миллиардов лет. По размерам видимая часть Вселенной занимает около 14 млрд световых лет. А некоторые утверждают, что Вселенная простирается на 90 миллиардов световых лет. Для большего удобства в подсчетах подобных расстояний принято применять величину парсек. Один парсек равен 3,2616 световых лет, то есть парсек – это расстояние, по которому средний радиус орбиты Земли просматривается под углом одной угловой секунды.

Вооружившись данными показателями, можно подсчитать космическое расстояние от одного объекта к другому. К примеру, расстояние от нашей планеты до Луны составляет 300000 км, или 1 световая секунда. Следовательно, до Солнца это расстояние увеличивается до 8,31 световых минут.

Всю свою историю люди пытались разгадать загадки, связанные с Космосом и Вселенной. В статьях портала сайт Вы сможете узнать не только о Вселенной, но и о современных научных подходах к ее изучению. Весь материал опирается на самые передовые теории и факты.

Следует заметить, что во Вселенную входит большое число известных людям различных объектов. Самые широко известные среди них – это планеты, звезды, спутники, черные дыры, астероиды и кометы. О планетах на данный момент понятно больше всего, поскольку на одной из них мы живем. У некоторых планет есть собственные спутники. Так, у Земли есть свой спутник – Луна. Помимо нашей планеты, есть еще 8, которые вращаются вокруг Солнца.

В Космосе много звезд, но каждая из них не похожа друг на друга. Они имеют разные температуры, размеры и яркость. Поскольку все звезды разнятся, их классифицируют следующим образом:

Белые карлики;

Гиганты;

Сверхгиганты;

Нейтронные звезды;

Квазары;

Пульсары.

Самое плотное известное нам вещество – это свинец. В некоторых планетах плотность их же вещества может в тысячи раз превосходить плотность свинца, что ставит перед учеными много вопросов.

Все планеты вращаются вокруг Солнца, но оно также не стоит на месте. Звезды могут собираться в скопления, которые, в свою очередь, также вращаются вокруг пока не известного нам центра. Эти скопления называются галактиками. Наша галактика называется Млечный путь. Все проведенные исследования на данный момент говорят, что большая часть материи, которую создают галактики, пока что для человека невидима. Из-за этого ее назвали темной материей.

Самыми интересными считаются центры галактик. Некоторые астрономы считают, что возможным центром галактики является Черная дыра. Это уникальное явление, образовавшееся в результате эволюции звезды. Но пока все это лишь теории. Проведение экспериментов или исследование подобных явлений пока что невозможно.

Помимо галактик, во Вселенной присутствуют туманности (состоящие из газа, пыли и плазмы межзвездные облака), реликтовое излучение, которые пронизывают все пространство Вселенной, и многие другие малоизвестные и даже неизвестные вообще объекты.

Кругооборот эфира Вселенной

Симметрия и равновесие материальных явлений – это главный принцип структурной организации и взаимодействия в природе. Причем во всех формах: звездной плазмы и вещества, мирового и высвобожденного эфиров. Вся суть таких явлений состоит в их взаимодействиях и превращениях, большинство из которых представлены невидимым эфиром. Его еще именуют реликтовым излучением. Это микроволновое космическое фоновое излучение, имеющее температуру 2,7 К. Бытует мнение, что именно этот колеблющийся эфир и является первоосновой для всего наполняющего Вселенную. Анизотропия распределения эфира связана с направлениями и интенсивностью его перемещения в разных областях невидимого и видимого пространства. Вся трудность изучения и исследования вполне сопоставима с трудностями изучения турбулентных процессов в газах, плазмах и жидкостях материй.

Почему многие ученые считают, что Вселенная многомерная?

После проведения экспериментов в лабораториях и в самом Космосе были получены данные, из которых можно предположить, что мы живем во Вселенной, в которой размещение любого объекта можно охарактеризовать временем и тремя пространственными координатами. Из-за этого возникает предположение, что Вселенная четырехмерная. Однако некоторые ученые, разрабатывая теории элементарных частиц и квантовой гравитации, возможно, придут к мнению, что существование большого количества измерений просто необходимо. Некоторые модели Вселенной не исключают такого их количества, как 11 измерений.

Следует учесть, что существование многомерной Вселенной возможно при высокоэнергетических явлениях – черные дыры, большой взрыв, барстеры. По крайней мере, это одна из идей ведущих космологов.

Модель расширяющейся Вселенной базируется на общей теории относительности. Ее предложили для адекватного объяснения структуры красного смещения. Расширение началось в одно время с Большим взрывом. Ее состояние иллюстрирует поверхность надутого резинового шарика, на который нанесли точки – внегалактические объекты. Когда такой шарик надувается, все его точки удаляются друг от друга независимо от положения. По теории Вселенная может либо расширяться бесконечно, либо сжаться.

Барионная асимметрия Вселенной

Наблюдаемое во Вселенной значительное увеличение количества элементарных частиц над всем числом античастиц называется барионной асимметрией. К барионам относят нейтроны, протоны и еще некоторые короткоживущие элементарные частицы. Данная диспропорция получилась в эру аннигиляции, а именно через три секунды после Большого взрыва. До этого момента количество барионов и антибарионов соответствовало друг другу. Во время массовой аннигиляции элементарных античастиц и частиц большая их часть объединилась в пары и исчезла, тем самым породив электромагнитное излучение.

Возраст Вселенной на портале сайт

Ученые современности считают, что нашей Вселенной примерно 16 миллиардов лет. По подсчетам минимальный возраст может быть 12-15 миллиардов лет. Минимум отталкивается от самых старых в нашей Галактике звезд. Реальный ее возраст определить можно, только лишь при помощи закона Хаббла, но реальный не значит точный.

Горизонт видимости

Сфера с равным расстоянию радиусом, которое свет проходит за все время существования Вселенной, называется его горизонтом видимости. Существование горизонта прямо пропорционально связано с расширением и сжатием Вселенной. Согласно космологической модели Фридмана, расширяться Вселенная начала от сингулярного расстояния примерно 15-20 миллиардов лет назад. За все время свет проходит в расширяющейся Вселенной остаточное расстояние, а именно 109 световых лет. Из-за этого каждый наблюдатель момента t0 после начала процесса расширения может обозревать лишь небольшую часть, ограниченную сферой, имеющую именно в этот момент радиус I. Те тела и объекты, которые в этот момент находятся за этой границей, в принципе, не наблюдаемы. Отбиваемый от них свет попросту не успевает добраться до наблюдателя. Это невозможно, даже если свет вышел в момент начала процесса расширения.

Из-за поглощения и рассеивания в ранней Вселенной, с учетом большой плотности, фотоны не могли распространяться в свободном направлении. Поэтому наблюдатель способен зафиксировать только то излучение, которое появилось в эпоху прозрачной для излучения Вселенной. Данная эпоха определяется временем т»300 000 лет, плотностью вещества r»10-20 г/см3 и моментом рекомбинации водорода. Из всего вышесказанного следует, что чем ближе в галактике находится источник, тем большим для него будет значение красного смещения.

Большой взрыв

Момент возникновения Вселенной называют Большим взрывом. Данная концепция стоит на том, что изначально была точка (точка сингулярности), в которой присутствовала вся энергия и все вещество. Основой характеристики принято считать большую плотность материи. Что было до этой сингулярности – неизвестно.

Относительно событий и условий, которые происходили к наступлению момента 5*10-44 секунды (момент окончания 1-го кванта времени), никакой точной информации нет. В физическом отношении той эры можно лишь предположить, что тогда температура составляла примерно 1,3*1032 градуса с плотностью материи примерно 1096 кг/м 3 . Эти значения предельны для применения существующих идей. Они появляются благодаря соотношению гравитационной постоянной, скорости света, постоянных Больцмана и Планка и именуются как «планковские».

Те события, которые связаны с 5*10-44 по 10-36 секунды, отражают модель «инфляционной Вселенной». Момент 10-36 секунды относят к модели «горячей Вселенной».

В период с 1-3 по 100-120 секунд образовались ядра гелия и небольшое количество ядер остальных легких химических элементов. С этого момента в газе начало устанавливаться соотношение – водорода 78%, гелия 22%. До одного миллиона лет температура во Вселенной начала понижаться до 3000-45000 К, началась эра рекомбинации. Прежде свободные электроны начали объединяться с легкими протонами и атомными ядрами. Начали появляться атомы гелия, водорода и малое количество атомов лития. Стало прозрачным вещество, а излучение, которое наблюдается до сих пор, отсоединилось от него.

Следующий миллиард лет существования Вселенной отметился понижением температуры от 3000-45000 К до показателя в 300 К. Этот период для Вселенной ученые назвали «Темным возрастом» из-за того, что еще не появилось никаких источников электромагнитного излучения. В этот же период неоднородности смеси первоначальных газов уплотнялись благодаря воздействию гравитационных сил. Смоделировав на компьютере эти процессы, астрономы увидели, что это необратимо приводило к появлению звезд-гигантов, превышающих массу Солнца в миллионы раз. По причине такой большой массы эти звезды нагревались до немыслимо высоких температур и эволюционировали за период десятков миллионов лет, после чего они взрывались как сверхновые. Нагреваясь до больших температур, поверхности таких звезд создавали сильные потоки ультрафиолетового излучения. Таким образом, наступил период переионизации. Плазма, которая образовалась в результате таких явлений, начинала сильно рассеивать электромагнитное излучение в его спектральных коротковолновых диапазонах. В некотором смысле Вселенная начала погружаться в густой туман.

Эти огромные звезды стали первыми во Вселенной источниками химических элементов, которые намного тяжелее за литий. Начали формироваться космические объекты 2-го поколения, в которых содержались ядра этих атомов. Эти звезды начали создаваться из смесей тяжелых атомов. Произошла повторного типа рекомбинация большей части атомов межгалактического и межзвездного газов, что, в свою очередь, привело к новой прозрачности пространства для электромагнитного излучения. Вселенная стала именно такой, которую мы можем наблюдать сейчас.

Наблюдаемая структура Вселенной на портале сайт

Наблюдаемая часть пространственно неоднородна. Большинство скоплений галактик и отдельных галактик формируют ее ячеистую или сотовую структуру. Они конструируют стенки ячеек, которые имеют толщину в пару мегапарсек. Эти ячейки называют «войдами». Они характеризуются большим размером, в десятки мегапарсек, и при этом в них нет вещества с электромагнитным излучением. На долю «войд» припадает около 50% всего объема Вселенной.

В космологии до сих пор нет четкого ответа на вопрос, который затрагивает возраст, форму и размеры Вселенной, а также нет единого мнения о ее конечности. Поскольку, если Вселенная конечна, то она должна либо сжиматься, либо расширяться. В том случае, если она бесконечна, многие предположения теряют смысл.

Еще в 1744 году астроном Ж.Ф. Шезо первый усомнился в том, что Вселенная

Бесконечна: ведь если количество звезд не имеет границ, то почему не сверкает небо и почему оно темное? В 1823 году Г. Олбес аргументировал наличие границ Вселенной тем, что свет, идущий к Земле от далеких звезд, должен становиться более слабым из-за поглощения веществом, которое находится на их пути. Но в таком случае сама эта субстанция должна нагреваться и светиться не хуже любой звезды. нашло свое подтверждение в современной науке, которая утверждает, что вакуум и есть «ничто», но вместе с тем он обладает реальными физическими свойствами. Конечно, поглощение вакуумом приводит к повышению его температуры, следствием чего являются тот факт, что вакуум становится вторичным источником излучения. Поэтому в том случае, если действительно размеры Вселенной бесконечны, то свет звезд, которые достигли предельного расстояния, имеет настолько сильное красное смещение, что начинает сливаться с фоновым (вторичным) излучением вакуума.

Вместе с тем, можно говорить, что наблюдаемой человечеством, конечны, поскольку конечна и сама Расстояние в 24 Гигапарсекса является границей светового космического горизонта. Однако из-за того, что увеличивается, конец Вселенной находится на расстоянии 93 миллиардов

Наиболее важным результатом космологии явился факт расширения Вселенной. Он был получен при наблюдениях за красным смещением и затем получил количественную оценку в соответствии с законом Хаббла. Это привело ученых к выводам, что теория Большого взрыва находит свои подтверждения. По данным НАСА,

которые были получены с помощью WMAP, начиная от момента Большого взрыва, равняется 13.7 миллиарда лет. Однако данный результат возможен только в том случае, если предположить, что та модель, которая лежит в основе анализа, корректна. При использовании других методов оценки получаются совершенно другие данные.

Затрагивая устройство Вселенной, нельзя не сказать и о ее форме. До сих пор не найдена та трехмерная фигура, которая бы наилучшим образом представила ее образ. Данная сложность связана с тем, что до сих пор точно не известно, плоская ли Вселенная. Второй аспект связан с тем, что доподлинно не известно о множественной соединенности ее. Соответственно, если размеры Вселенной пространственно ограничены, то при движении по прямой линии и в любом направлении можно оказаться в исходной точке.

Как мы видим, технический прогресс еще не достиг того уровня, чтобы точно ответить на вопросы, касающиеся возраста, устройства и размеров Вселенной. До сих пор многие теории в космологии не нашли своего подтверждения, но и не были опровергнуты.